光学陀螺仪的基本精度极限

姜亚南 范崇澄 杨雪郁

(清华大学)

提要:本文讨论和比较了 Sagnac 效应的光学陀螺仪的精度基本极限,对于一些 实际问题也作了介绍。

The fundamental precision limit of optical gyros

Jiang Yanan Fan Chungcheng Yang Xueyu

(Qinhua University)

Abstract: Many kinds of optical gyros based upon the Sagnac effect have been constructed. Their fundamental precision limits are discussed and compared in this article. Some practical problems are also presented.

一、引言

目前已出现多种基于 Sagnao 效应的 光 学方法,来感测相对于惯性空间的转动。例 如环形激光器、无源环形谐振腔、光纤干涉仪 等。

所谓 Sagnac 效应早在 1913 年 就 被 提 出了。当一环形光路,相对于惯性空间有一 转动 Ω 时(设 Ω 垂直于环路平面),则对于 顺、逆时针的光路将产生一非互易的光程差.

$$\Delta L = \frac{4A}{C} \,\Omega \tag{1}$$

其中 A 为环形光路所包围的面积, C 为光 速。为说明此效应,参看图 1。在圆形环 路中,二束光同时从 A 点出发,分别沿顺 (CW)、逆(CCW)时针方向,绕环形光路行 进,当环路有一转动 Ω时,它们将不能同时 回到原点。这是由于原点 A 在光行进一周

. 34 .

的时间 $t = \frac{2\pi R}{C}$ 内,已位移到 A'的位置。于 是在 CCW 光回到原点(即 A' 处)的时间内, CW 光以相等的光速仅到达 B 点。 这距离 原点还相差 ΔL 的距离。光程差为

$$1L = 2R\Omega t = \frac{4A}{C} \Omega,$$

这就是对顺、逆光为非互易的光程差。例如

设环路所包围的面积 $A = 100 \ {\rm m} \times {\rm m}^2, \lambda = 0.63$ 微米,则地球自转

 $\Omega_E = 7.3 \times 10^{-5}$ 弧度/秒

~10-4 弧度/秒

所产生的非互易程差

△L~10-12 厘米。

对于目前一般惯性导航方面的应用,必须检测到的转动偏差 $\delta\Omega$,大约是地球自转 Ω_E 的 10⁻³到 10⁻⁶量级。而对于经、纬度的 测量则要求 $\frac{\delta\Omega}{\Omega_E} \leq 10^{-6}$ 。对于地球物理方面 的应用,如天体纬度、地球两极的摆动、地 球自转角速度的变化、地震等测量,则要求 $\frac{\delta\Omega}{\Omega_E} \leq 10^{-11}$ 。这意味着,需要检测的非互易 光程差 4L是小到 10⁻¹⁵~10⁻²³ 厘米量级的。 为了测量如此微小的,由于 Sagnac 效应产 生的非互易光程差 4L (或位相差 4ϕ),已出 现多种有源和无源方案(表 1)。本文的目的 在于讨论这些方案的基本理论极限,以及它 们之间的比较。

非互易程差 4L 的测量, 其方法可分为

两类,如表1所示。下面对各种方案分别进 行讨论。

二、环形激光器方案

A. 特点

这是一种有源方案,即环形谐振腔中有源。其主要优点是:(1)无源腔的谐振曲线 I(f)的半宽度 Γ_o (无源腔带宽)。由于腔内激活介质的增益过程,补偿了空腔的损耗,使 有源腔的 Q 值大为增加,从而实际振荡激光 的线宽 Γ 将大大压缩,即有源腔的线宽 $\Gamma \ll \Gamma_o$ (见(4)式)。这将会使频率测量的误 差大为减小。(2)高灵敏度。这是由于微小 的程差 4L 转变为放大了的、可直接测量的 频差 4f 的信号:

$$\Delta f = -\frac{\Delta L}{L} f = \frac{4A}{\lambda L} \Omega \tag{2}$$

当 A = 100 厘米², L = 40 厘米, $\Omega = \Omega_E \simeq 10^{-4}$ 弧度/秒, $\lambda = 0.63$ 微米时,

$$\Delta f = 10 赫$$

. 35 -

B. 基本精度极限 $\delta \Omega$

由 $\delta \Omega = \frac{\lambda L}{4A} \delta(\Delta f)$ 可见,惯性转动的测量误差 $\delta \Omega$ 的极限,直接取决于 $\delta(\Delta f)$ 。

(1) 探测器的散粒噪声(Shot-Noise), 其对应的极限值为:

$$\delta(\Delta f) = \frac{\sqrt{2} \Gamma}{\sqrt{n_0 \eta_D \tau}} *_{o}$$
(3)

其中: **Г**: 单模激光的线宽;

no: 激光器每秒输出到探测器的光子 数;

η_{D:} 探测器光电转换的量子效率;

τ:测量中统计平均的取样时间。

(2)量子噪声:由于自发辐射,导至频 率 fow 和 foow 有一波动。在激光器中,自发 辐射所贡献的非相干辐射,相对于受激过程 所贡献的相干辐射,是一种量子噪声。其结 果表现为激光频率有一随机波动,其展宽为

$$\Gamma \approx \frac{2\pi \Gamma_c^2}{n_0} = \frac{2\pi h \nu \Gamma_c^2}{P_0}$$
(4)

no: 每秒离开激光器的光子数;

Po: 激光器的输出功率;

Γ_{c:} 无源腔线宽。

设 $P_0 = 1$ 毫瓦 (对于 $\lambda = 0.63$ 微米的 光,相 当 $n_0 = 3 \times 10^{15}$ /秒), $\Gamma_o = 10^6$ 赫,则 $\Gamma \simeq 10^{-3}$ 赫。 Γ 比 Γ_o 小若干个数量级 (由于外界因 素引起频率 f 的波动,在拍频信号

 $\Delta f = f_{ccw} - f_{cw}$

中已抵消掉。)。

当没有这种频率波动时,相位随时间的 变化规律为(图 2):

$$\phi(\tau) = 2\pi f \tau$$

存在这种频率波动的情况下

$$\phi(\tau) = 2\pi f \tau + \overline{\delta \phi(\tau)}$$
$$= 2\pi f \tau + \sqrt{2\pi \Gamma \tau} = 2\pi f'$$

于是

$$\delta f = |f' - f| = \frac{\sqrt{2\pi\Gamma\tau}}{2\pi\tau} = \sqrt{\frac{\Gamma}{2\pi\tau}} = \frac{\Gamma_o}{\sqrt{n_o\tau}}$$

即在量子噪声下,环激光输出的拍频信号 4f 的波动为

(5)式与(3)式相比,因为 $\Gamma \ll \Gamma_o$,从而 由散粒噪声所导至的误差完全可以忽略。即 环激光方案,精度的基本极限 $\delta\Omega$ 为自发辐 射的量子噪声所决定。故

$$\delta\Omega = \frac{\lambda L}{4A} \frac{\sqrt{2} \Gamma_{\sigma}}{\sqrt{n_0 \tau}} \tag{6}$$

由于自发辐射是不可避免的,因此由式 (6)所决定的 δΩ 是可能达到的最小极限。

设: $\lambda = 6.3 \times 10^{-5}$ 厘米, A = 100 厘米², L = 40 厘米, $\Gamma_{c} = 10^{6}$ 赫, $P_{0} = 1$ 毫瓦, $\tau = 1$ 秒,则 $\delta \Omega \simeq 10^{-3} \Omega_{E} \simeq 0.015$ 度/小时。

对于一台具体的环形激光器,只要测出 其空腔带宽 Γ_o ,输出功率 P_o ,就可以知道 它所能达到的极限精度。而减小 Γ_o (即增大 无源腔的 Q 值),提高输出功率 P_o ,增大取 样时间 τ ,其 $\delta\Omega$ 就会相应地减小。

 Γ_{o} 与 n_{0} 都与激光器的损耗及增益有关。 以一实际四频差 动激光器 为例,设 L=60厘米,比例系数 $\Delta f/\Omega = 1$ 赫/度/小时。由于 腔中插入光学元件,其单程总损耗为 2%,则 其 $\Gamma_{o}=1.6$ 兆赫。 又输出功率为 0.1 毫瓦, 则当 $\tau=1$ 秒时, $\delta\Omega \simeq 0.1$ 度/小时。

这是实验工作中所要注意的。由于激光 陀螺实验精度(随机漂移)已接近量子噪声极 限(当 $\tau=1$ 秒时,拍频 Δf 的漂移在 $0.2\sim$ 0.3 g/小时之间),在继续排除其它误差源

* (3)式的简单证明与(12)式类似。

• 36 •

时,要注意到这种随机的量子噪声。 它在总 误差中已占有一可观的份额,而这是不能排 除的。同时要考虑的是,选择合适的偏频方 案,改善激光器的性能(增、损比率)以获得较 小的 δΩ 值。

C. 主要实际问题

当然环形激光器还存在一系列的误差 源。只有克服了这些误差源,才能逐步趋近于 (6)式的理论极限。这里的误差源主要是由 于增益介质引入谐振腔内所带来的,有拍频 的闭锁;增益介质流动所引入的 Langmuir 流效应;模的推斥和牵引;温度效应等。可见 有源腔带来的即有利也有弊。

例如,由于腔内损耗的非均匀性及反向 散射的存在,在行波腔的自治场方程中引入 一反向行波的耦合项。其结果是使陀螺公式 $\Delta f = \frac{4A}{\lambda L} \Omega$ 中增加了新的非线性项,即图 $3 中 \Delta f - \Omega$ 曲线偏离直线而出现一闭锁区 $(+\Omega_L \rightarrow -\Omega_L)$ 。为克服这一现象,采用一 系列恒定或交变的非互易偏频方法。如机械 抖动,Kerr 磁镜,Faraday 效应(四频差动陀 螺)等(图 3)。

这里对转动的传感元件是一闭合的无源 环形腔,当环腔无转动时,此环腔沿顺、逆 时针方向的谐振曲线 *I*(*f*)是简并的(图 4)。 而当环腔在惯性空间 有一转动 Ω 时,由于 Sagnac 效应,顺、逆时针的空腔谐振曲线发 生分裂,其峰值间隔为

$$\Delta f = f_{ccw} - f_{cw} = \frac{4A}{\lambda L} \,\Omega_{\circ} \tag{7}$$

它与有源腔的不同是:在空腔的情况下,并没 有光振荡产生及输出。从而必须采用外部的 方法去探测这种空腔谐振曲线的分裂。例如 可以采用图 5 所示的方法。令一频率为 f_0 的激光束经分光镜 M_1 后,再分别经调制频 率为 f_1 及 f_2 的声光调制器 A/O转变成频率 为 f_0+f_1 , f_0+f_2 的行波,沿逆、顺时针方 向注入空腔。而从空腔的另一端 f_0+f_1 和 f_0+f_2 光分别取样,输出到光电探测器 PD_1 和 PD_2 上。其输出光强取决于探测光频与 相应的空腔调谐曲线 $I_{cw}(f)$, $I_{cow}(f)$ 在频 率轴上的相对位置。如当 f_0+f_2 与 $I_{ow}(f)$ 中心频率重合时, PD_2 上接收到最大的光 强。于是通过 PD_2 、伺服系统 B及压电元件

• 37 •

PZT 来调整空腔腔长,直到使 $I_{ow}(f)$ 的峰 值频率与探测光频 $f_0 + f_2$ 重合。同时再用 PD_1 和 PD_2 输出的差动信号去推动伺服系 统 A 来调整 f_1 ,从而通过 A/O 来调整光频 $f_0 + f_1$,使它也落在 $I_{ccw}(f)$ 曲线的峰值上, 这时差动信号为零。也即通过两套闭环控制 系统,使 $f_0 + f_1$ 和 $f_0 + f_2$ 分别与 $I_{ccw}(f)$ 和 $I_{cw}(f)$ 的峰值重合。于是在计数器上读出 $f_2 - f_1 = \Delta f_0$ 从而实现了用外部的被动方法 探测空腔的频差 $\Delta f(或程差 \Delta L)$ 。

这种无源方案与有源方案的差别就在 于:在有源方案中,与 ΔL 相应的频差 Δf 是 传感元件(环激光)本身所输出的,而在无源 方案中,则是必须用外部的方法去探测的。 那么在讨论测量精度的基本极限时,其空腔 谐振频率的探测误差,必将起主要作用(而在 有源方案中这项可以略去,如(3)式可略)。 即空腔谐振线宽 Γ₀和探测器散粒噪声将成 为主要的问题。

B. 基本精度极限

图 6 所示, 是经光电探测器后的空腔调 谐曲线 I(f), 其半宽度为 Γ_{oo} 。在曲线上迭 加有散粒噪声, 这是由接收器所引入的。 前 面已说明, 用频率为 f_{o} 的激光束跟踪无源腔 谐振曲线 I(f) 的峰值频率点, 从而实现对 无源腔频差的测量。 但由于在 I(f) 曲线的

峰值处,其斜率趋于零,所以频率的跟踪精度 必然很低。在实际测量中是采用交流调制的 技术,例如加一方波调制,如图6。只有当 方波调制信号的二顶线对称地处在峰值两侧 时,输出讯号才趋于零。这样,实际工作点就 在谐振曲线 I(f)的两侧,斜率 K 较大的位 置上。这时,由于上述噪声 N 所引入的频 率 f 的波动 $\delta f = \frac{N}{K}$ 。近似地将此谐振曲线 看为三角形函数,则 $K \simeq \frac{I}{T_o}$, I 为峰值处电 信号幅度。则有

$$\delta f = \frac{\Gamma_c}{I/N} \, \mathbf{o} \tag{8}$$

而散粒噪声

$$N \simeq \sqrt{\frac{eI}{\tau}}^{[5]} \tag{9}$$

这里,信号 *I* = n₀η_De, e 为电子电量, η_D 为光 电探测器的量子效率, n₀ 为每秒到达探测器 的光子数, τ 为测量取样时间。

于是,在散粒噪声下的信噪比

$$\frac{I}{N} = \sqrt{n_0 \eta_D \tau} \tag{10}$$

且

$$\delta f = \frac{\Gamma_c}{\sqrt{n_0 \gamma_D \tau}} \tag{11}$$

精度的基本极限

δ

$$\Omega = \frac{\lambda L}{4A} \,\delta(\Delta f) = \frac{\lambda L}{4A} \,\frac{\sqrt{2} \,\Gamma_o}{\sqrt{n_0 \gamma_D \tau}} \quad (12)$$

$$\delta\Omega \simeq 10^{-3} \Omega_{Eo}$$

从上式可见,由于 $\sqrt{\eta_D} \sim 1$,故在相同条件下,无源腔方案与有源腔方案的基本精度极限在同一数量级内。增大无源腔的面积, 增强探测激光的功率,延长取样时间,减小腔的线宽或减小选用的波长都可降低 $\delta\Omega$ 值。例如,对于 A=30 米×30 米的大腔,选用 $P_0=4$ 瓦的单模激光, $\tau=1$ 小时,腔镜反射率 R=0.995。则 $\delta\Omega \simeq 10^{-11} \Omega_E$ 。但在有源激

. 38 .

光陀螺中,由于单模的要求,其面积与功率都 不可能随意增大,δΩ也不可能大幅度减小。

无源谐振腔陀螺,由于腔内无源,从而避 免了在环激光中,增益介质所引入的多种误 差源。但它所存在的问题是反馈环的误差, 高阶横模的耦合等问题。

四、多圈光纤谐振环方案

当忽略腔内光纤损耗,只考虑透射损耗的情况下,无源腔的线宽反比于腔长*。则用 N 圈光纤谐振环构成的无源腔的线宽将是 一圈时的线宽 Γ_o的 1/N。即在此情况下, 其精度的基本极限为:

$$\delta \Omega = \frac{\lambda L}{4A} \frac{\Gamma_{c}/N}{\sqrt{n_{0}\eta_{D}\tau}}$$
(13)

这里, L、A, 是一圈的长度与面积。

光纤环陀螺本身可以是一单模腔,所以 没有模的耦合效应。其主要缺点在于光纤的 损耗使腔的 Q 值降低。它的技术 难 点 是 光 纤的性能、耦合等。当然所用激光的线宽必 须很窄,以避免色散效应。 光纤环陀螺示意 图如图 7。

五、多圈光纤干涉仪方案

A. 基本精度极限 $\delta \Omega$

N 圈光纤绕在面积为 A 的圆柱上,则有

$$L = \frac{4A}{c} N\Omega \tag{14}$$

$$\delta \Omega = \frac{c}{4AN} \,\delta(\Delta L) \tag{15}$$

由于散粒噪声

▲ 南京 根 限 的

$$\delta(\Delta L) = \frac{\lambda/2}{I/N} = \frac{\lambda/2}{\sqrt{n_0 \eta_D \tau}}$$
(16)
$$\delta \Omega = \frac{c}{\sqrt{\lambda/2}} \frac{\lambda/2}{\sqrt{n_0 \eta_D \tau}}$$
(17)

$$4AN \sqrt{n_0 \eta_D \tau}$$

设进入光电探测器 PD 的激光功率

 $P_0 = n_0 h \nu = 1$ 毫瓦, $A = 100 \ {\rm m} {\mathbb R}^2$, $\lambda = 6 \times 10^{-5} \ {\rm m} {\mathbb R}$, $\tau = 1$ 秒, $\eta_D = 0.3$, N = 1000(圈)

则当 $\Omega = \Omega_E$ 时,

 $\Delta L \simeq 10^{-9}$ 厘米 $\simeq 2 \times 10^{-5} \lambda_{\circ}$ 而基本精度极限 $\delta \Omega \simeq 10^{-3} \Omega_{E_{\circ}}$

B. 测量方法

在光纤干涉仪中,尽管顺、逆光的非互易 光程差 4L 被放大了 N 倍,但为实现如此小 的程差测量,一般采用零相位技术。即用另 一种非互易的相移来补偿待测的相差。

由顺时针光波的位相

 $\phi_{cw} = \frac{2\pi}{c} (fnL)_{cw}$

及逆时针光波的位相

 $\phi_{ccw} = \frac{2\pi}{c} (fnL)_{ccw},$

. 39

可见,实现这种非互易的相移,无非利用以下 三类非互易效应。

非互易程差:

$$\Delta \phi_L = \frac{2\pi}{c} fn(L_{OCW} - L_{OW}) \qquad (18)$$

非互易折射率差:

$$\Delta \phi_n = \frac{2\pi}{c} f L (n_{cow} - n_{cw}) \qquad (19)$$

非互易光频差:

$$\Delta \phi_f = \frac{2\pi}{c} n L (f_{cow} - f_{cw}) \qquad (20)$$

为实现非互易的程差 4*ф*_L,可采用机械 转动及抖动。显然这是不甚理想的。而实现 非互易的折射率差,办法很多,如磁光效应 (Faraday, Kerr 效应),电光效应等。其示 意图如图 9^[2]。

 图 9 用电光技术测量非互易相移 (非互易折射率方法)
P-偏振片 BS-分光镜 PD-光电探测器 OBJ-40×物镜 E/O-电光元件 λ/2-半波片 PSD-相敏检波
(a) ↔→-S 线偏光 (b)++→-P 线偏光

 $\Delta \phi_n = \frac{2\pi}{c} f L_{E/O}(n_P - n_S) \qquad (21)$

这里, *L_{E/0}* 是电光元件 *E/O* 的长度, (*n_P-n_s*) 是电光元件对 *S*、*P* 偏振光的折射 率之差。由电光调制器产生的非 互易 相移 •40 •

图 10 用声光技术测量非互易相移 (非互易光频方法) A/O-声光频移器 VCO-电压控制振荡器 其余同上图

来抵消由于转动所产生的相移,实现零相位跟踪。

非互易光频差 4여,的方案^[2],可以在光路中插入一声光移频器 4/O。使光纤中运行的顺、逆光的频率产生一差值,从而产生相移。其方案示意如图 10,此时光频差式中 n 为光纤折射率, L 为光纤总长度。

设 $A = 100 \ {\rm m} {\mathbb R}^2$, $N = 1000 ({\ B})$, 则 $L = 350 \ {\ R}, \ {\ Q} \ n = 1.5$ 。当

 $f_2 - f_1 = f_{ccw} - f_{cw} = 170$ 千赫时,由于顺、逆光的非互易频差,所引入的相移 $\Delta \phi_f = \frac{\pi}{2}$ 。

C. 主要问题:

选用适当的非 互 易 程 差 4L 的 测 量 技 术,适当的偏振控制,以避免光纤中的双折 射、耦合与输出;上述各种非互易效应的漂 移;光纤的温度效应及损耗等。

六、各种光陀螺方案精度极限的 综合与比较

列于表 2, 比较 A、B、C、D 四种方案 可见如下。

A 环激光	$\delta Q = \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2} \Gamma_c}{\sqrt{n_0 \tau}} = \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2} C/LF}{\sqrt{n_0 \tau}}$ $= \beta/F$
B 无源谐振腔	$\delta Q = \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2} \Gamma_o}{\sqrt{n_0 \tau \eta_D}} = \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2} C/LF}{\sqrt{n_0 \tau \eta_D}}$ $= \beta/F \sqrt{\eta_D}$
C 无源谐振光 纤环(N 圈)	$\delta \Omega = \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2}\Gamma_c/N}{\sqrt{n_0 \tau \eta_D}}$ $= \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2}C/LFN}{\sqrt{n_0 \tau \eta_D}} = \beta/FN\sqrt{\eta_D}$
D 光纤干涉仪 (N圈)	$\delta \mathcal{Q} = \left(\frac{\lambda L}{4A}\right) \frac{C/2LN}{\sqrt{n_0 \tau \eta_D}} = \left(\frac{\lambda L}{4A}\right) \frac{C/2LN}{\sqrt{n_0 \tau \eta_D}}$ $= \beta/2 \sqrt{2} N \sqrt{\eta_D}$
F	$P \equiv \frac{C}{Ll'_c} \qquad \beta \equiv \left(\frac{\lambda L}{4A}\right) \frac{\sqrt{2} C/L}{\sqrt{n_0 \tau}}$

(1) A 是有源方案,其它三种都是无源 方案。 A 方案中,传感器本身就有线宽很窄 的激光输出,从而,它的精度受限于自发辐 射的量子噪声。而其它三种被动方案,则受 限于散粒噪声,因而包含探测器的量子效率 70 因子。

(2) A、B、C 三种方案的精度极限中都 包含优值系数F,而D中不包含。这是由于前 三者都属于谐振腔的工作状态,必然包含反 映腔的质量的参量 F (F 正比于腔的Q 值)。 F 越大,则 $\delta\Omega$ 越小。

设环激光 $L=4\times10$ 厘米, $\Gamma_{e}=10^{6}$ 赫,则 $F=7.5\times10^{2}$ 。对于同样面积的光纤干涉仪,N=500(圈)时,将能达到上述环激光所相当的极限精度。

(3)有源腔激光陀螺,至今已有近 20 年的发展历史。在波音 757/767 上装备激光陀螺⁽⁶⁾,标志它已进入实用阶段。并由于它的特点,在广泛的领域内,有取代机械陀螺的趋势。从研究现状看,它的精度已达到 10⁻³~

 $10^{-4} \Omega_E$ 量级 ($\tau = 1$ 小时)。由于上面提到的 原因,它的极限精度已不太可能有更明显的 减小。

*B*方案,从美国麻省理工学院 S. Ezekiel 教授在 70×70 厘米²的无源腔上的研究现 状看,已达到 $3×10^{-5}\Omega_E$ 的水平 ($\tau=1$ 小 时)。而腔的大小和输出功率 *P*₀,在原理上 并没有限制,所以它的潜力仍很大。但由于 它面积大,对工作条件的要求高等局限,可以 期望在角度测量,地球物理测量等高精度的 领域发挥作用。

至于D方案,尚处于初期研制阶段。目前已达到 $1\sim0.1\Omega_E(\tau=10$ 秒),预期将有很大的发展。

七、未来

尽管光纤干涉仪,目前所达到的灵敏度 还比环形激光器低三个数量级,但可以预 见,采用半导体激光器和集成光学技术的集 成光纤传感器,将构成全固态、低成本、小体 积、高灵敏度的光陀螺。此外也可能是使用 波长 λ~1Å 的中子波陀螺仪。

本文主要参考美国麻省理工学院教授 S. Ezekiel 的报告 [1], [2], 并曾与教授本 人讨论,在此表示感谢。

参考文献

- S. Ezekiel; Optical "Gyroscopes", ICL' 80, p 167. 《激光》, 1930, 7, No. 5~6, 167.
- [2] J. L. Davisand, S. Ezekiel; Proceedings of the Society Photo-Optical Instrumentation Engineers Volume 157 "Laser Inertial Rotation Sensors" (1978).
- [3] Amnon Yariv, "Quantum Electronics", Second Edi. p. 303.
- [4] S. Ezekiel, S. R. Balsomo; Appl. Phys. Lett., 1977 (May), 30, No.9, 473~480

41

- [5] 王竹溪; 《统计物理学导论》, p. 155.
- [6] Laser Focus, 1979, 15, No. 2, 26.